New Non-Extremal Triple Arrays

Alexey Gordeev

Umeå University

Based on joint work with Lars-Daniel Öhman

July 2024

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- ullet every symbol appears e times
- ullet every two rows have λ_{rr} common symbols
- ullet every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- ullet every symbol appears e times
- ullet every two rows have λ_{rr} common symbols
- ullet every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- ullet every symbol appears e times
- every two rows have λ_{rr} common symbols
- ullet every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- ullet every symbol appears e times
- ullet every two rows have λ_{rr} common symbols
- ullet every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- ullet every symbol appears e times
- ullet every two rows have λ_{rr} common symbols
- ullet every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

- An $(r \times c)$ -array on v symbols with no repetitions in rows or columns
- every symbol appears e times
- ullet every two rows have λ_{rr} common symbols
- every two columns have λ_{cc} common symbols
- ullet every row and column have λ_{rc} common symbols

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

Why triple arrays?

- Great experimental designs: efficient in eliminating the effects of two factors
- Have interesting combinatorial structure; generalize latin squares and Youden rectangles

 $\diamond \ (r \times c, rc) \text{-triple array}$

	,					
\Diamond	$(n \times$	n, n)-triple	array:	latin	square

 $\diamond (n \times k, n)$ -triple array: Youden rectangle

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

L					
	1	2	3	4	5
	2	1	4	5	3
	3	4	5	1	2
	4	5	2	3	1
	5	3	1	2	4

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

 $\diamond \ (r \times c, rc) \text{-triple array}$

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
			~	~ .	

 $\diamond (n \times n, n)$ -triple array: *latin square*

1	2	3	4	5
2	1	4	5	3
3	4	5	1	2
4	5	2	3	1
5	3	1	2	4

 $\diamond \ (n \times k, n) \text{-triple array:} \ \textit{Youden rectangle}$

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

• Usually it is assumed that $\max(r,c) < v < rc$

$$\diamond~(r \times c, rc)$$
-triple array

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24

\ \	(n	×	n,	n	-triple	array:	latin	square	
------------	----	---	----	---	---------	--------	-------	--------	--

_					
	1	2	3	4	5
	2	1	4	5	3
	3	4	5	1	2
	4	5	2	3	1
	5	3	1	2	4

$\diamond \ (n \times k, n) \text{-tri}$	ole array:	Youden	rectangle
--	------------	--------	-----------

1	2	3	4	5	6	7
2	3	4	5	6	7	1
4	5	6	7	1	2	3

- \bullet Usually it is assumed that $\max(r,c) < v < rc$
- $\diamond \ (r \times c, v) \ \text{determine} \ e = \lambda_{rc} = \frac{rc}{v} \text{,} \ \lambda_{rr} = \frac{c(e-1)}{r-1} \text{,} \ \lambda_{cc} = \frac{r(e-1)}{c-1}$
- $(r \times c, v)$ are admissible if $e, \lambda_{rr}, \lambda_{cc}, \lambda_{rc}$ are integers, $\max(r, c) < v < rc$

- $\diamond\ v \geq r+c-1$ Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005
- $(r \times c, v)$ -TA is extremal if v = r + c 1

- $\diamond\ v \geq r+c-1$ Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005
- $(r \times c, v)$ -TA is extremal if v = r + c 1
- ♦ Construction: Agrawal, 1966

symn	netric 2-des	ign ———	ient problem	→ extremal	TA		
		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	$2,\!3,\!6,\!9,\!10$	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	$2,\!4,\!5,\!8,\!9$	1,5,6,7,9
R_1	1,2,3,4,5,6						
R_2	1,2,3,7,8,9						
R_3	1,4,6,8,9,10						
R_4	2,5,6,7,8,10						
R_5	$3,\!4,\!5,\!7,\!9,\!10$						

- $\diamond\ v \geq r+c-1$ Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005
- $(r \times c, v)$ -TA is extremal if v = r + c 1
- ♦ Construction:

Symin	netric z-desi	ıgıı ———		extremai	IA		
		C_1	C_2	C_3	C_4	C_5	C_6
		1,2,4,7,10	2,3,6,9,10	$1,\!3,\!5,\!8,\!10$	3,4,6,7,8	$2,\!4,\!5,\!8,\!9$	1,5,6,7,9
R_1	1,2,3,4,5,6	1 , 2, 4	2 , 3, 6	1, 3 , 5	3, 4 , 6	2, 4, 5	1, 5, 6
R_2	1,2,3,7,8,9	1, 2, 7	2, 3, 9	1 , 3, 8	3, 7, 8	2, 8, 9	1, 7, 9
R_3	1,4,6,8,9,10	1, 4 , 10	6, 9, 10	1, 8, 10	4, 6 , 8	4, 8, 9	1 , 6, 9
R_4	2,5,6,7,8,10	2, 7, 10	2, 6 , 10	5, 8, 10	6, 7, 8	2 , 5, 8	5 , 6, 7
R_5	3,4,5,7,9,10	4, 7, 10	3, 9 , 10	3, 5 , 10	3 , 4, 7	4 , 5, 9	5, 7 , 9

- Assignment problem: find $a_{ij} \in R_i \cap C_j$: $a_{ij} \neq a_{kj}$, $a_{ij} \neq a_{il}$
- \diamond NP-complete if R_i, C_j are arbitrary

Fon-Der-Flaass, 1997

Agrawal, 1966

⋄ Construction:

 R_5

- $\diamond\ v \ge r + c 1$ Bagchi, 1998; McSorley-Phillips-Wallis-Yucas, 2005
- $(r \times c, v)$ -TA is extremal if v = r + c 1
- symmetric 2-design $\xrightarrow{\text{assignment problem}}$ extremal TA

 C_5 C_1 C_2 C_3 C_{A} C_6 1,2,4,7,10 2,3,6,9,10 1,3,5,8,10 3,4,6,7,8 2,4,5,8,9 1,5,6,7,9 $| \mathbf{1}, 2, 4 | \mathbf{2}, 3, 6 | 1, \mathbf{3}, 5$ 3, **4**, 6 2, 4, 5 1, 5, **6** 1,2,3,4,5,6 R_1 3, 7, 8 R_2 1,2,3,7,8,9 | 1,2,7 | 2,3,9 | **1**, 3, 8 2, 8, 9 1, 7, 9 $1,4,6,8,9,10 \mid 1, 4, 10 \mid 6, 9, 10 \mid$ 1, 8, 10 4, **6**, 8 4, 8, 9 **1**, 6, 9 R_3 2, 7, 10 2, 6, 10 5, 8, **10** 6, 7, 8**2**, 5, 8 **5**, 6, 7 R_4 2,5,6,7,8,10

3, **5**, 10

• Assignment problem: find $a_{ij} \in R_i \cap C_j$: $a_{ij} \neq a_{kj}$, $a_{ij} \neq a_{il}$

3, **9**, 10

 \diamond NP-complete if R_i, C_i are arbitrary

3,4,5,7,9,10

Fon-Der-Flaass, 1997

4, 5, 9

3, 4, 7

 \diamond Every extremal TA can be constructed this way: extremal TA \rightarrow symmetric 2-design

4, 7, **10**

MPWY, 2005

5, 7, 9

Agrawal, 1966

- Constructions of extremal TA avoiding the assignment problem step
 - ♦ from Hadamard matrices
 - from Youden rectangles
 - from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014 Nilson-Cameron, 2017

- Constructions of extremal TA avoiding the assignment problem step
 - ♦ from Hadamard matrices
 - from Youden rectangles
 - ⋄ from difference sets

Preece-Wallis-Yucas, 2005 Nilson-Öhman, 2014

Nilson-Cameron, 2017

- What about constructions of non-extremal triple arrays?
 - \diamond "Small" non-extremal admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

- Constructions of extremal TA avoiding the assignment problem step
 - ⋄ from Hadamard matrices
 - from Youden rectangles
 - ⋄ from difference sets

Preece-Wallis-Yucas, 2005

Nilson-Öhman, 2014

Nilson-Cameron, 2017

- What about constructions of non-extremal triple arrays?
 - \diamond "Small" non-extremal admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

♦ There is!

MPWY, 2005; Yucas, 2002

31	1	18	16	7	10	5	3	4	2	33	14	19	15	12
26	32	1	2	29	30	28	20	27	11	5	34	3	8	4
1	17	13	9	3	4	21	22	6	35	25	5	24	2	23
6	27	33	28	16	13	35	30	15	10	9	26	12	17	29
16	12	23	32	34	21	15	33	24	22	11	10	8	25	20
21	22	28	24	25	19	7	14	18	29	27	23	26	30	31
11	7	8	14	13	32	20	6	34	18	19	17	35	31	9

♦ This is the only example of a non-extremal triple array known so far!

- Constructions of extremal TA avoiding the assignment problem step
 - ⋄ from Hadamard matrices
 - ♦ from Youden rectangles
 - from difference sets

Preece-Wallis-Yucas, 2005

Nilson-Öhman, 2014

Nilson-Cameron, 2017

- What about constructions of non-extremal triple arrays?
 - \diamond "Small" non-extremal admissible $(r \times c, v)$: $(7 \times 15, 35)$, $(11 \times 45, 99)$, $(15 \times 21, 63)$, $(16 \times 21, 56)$, $(16 \times 25, 100)$, $(13 \times 40, 130)$
- \diamond Is there a $(7 \times 15, 35)$ -triple array?

Preece, 1970s

♦ There is!

MPWY, 2005; Yucas, 2002

31	1	18	16	7	10	5	3	4	2	33	14	19	15	12
26	32	1	2	29	30	28	20	27	11	5	34	3	8	4
1	17	13	9	3	4	21	22	6	35	25	5	24	2	23
6	27	33	28	16	13	35	30	15	10	9	26	12	17	29
16	12	23	32	34	21	15	33	24	22	11	10	8	25	20
21	22	28	24	25	19	7	14	18	29	27	23	26	30	31
11	7	8	14	13	32	20	6	34	18	19	17	35	31	9

♦ This is the only example of a non-extremal triple array known so far!

A non-extremal $(7 \times 15, 35)$ -triple array

- Row design = 5 copies of a symmetric 2-design
- Column design = 7 parallel classes = resolution of a 2-design
- Can we get other triple arrays with a similar structure?

New triple array construction G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := \frac{e(e-1)}{r-1}$ and $k := \frac{c}{e}$ are integers
- (1) choose a symmetric 2-(r, e, a) design (row design = k copies of it)
- (2) choose a resolution of a resolvable 2- (c, e, λ_{cc}) design (column design)
- (3) choose a bijection between blocks of (1) and parallel classes of (2)
- (4) solve the assignment problem

New triple array construction G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := \frac{e(e-1)}{r-1}$ and $k := \frac{c}{e}$ are integers
- (1) choose a symmetric 2-(r,e,a) design (row design = k copies of it)
- (2) choose a resolution of a resolvable 2- (c,e,λ_{cc}) design (column design)
- (3) choose a bijection between blocks of (1) and parallel classes of (2)
- (4) solve the assignment problem
 - First general construction for non-extremal TA

New triple array construction G.-Öhman, 2023+

- admissible $(r \times c, v)$, $a := \frac{e(e-1)}{r-1}$ and $k := \frac{c}{e}$ are integers
- (1) choose a symmetric 2-(r,e,a) design (row design = k copies of it)
- (2) choose a resolution of a resolvable 2- (c,e,λ_{cc}) design (column design)
- (3) choose a bijection between blocks of (1) and parallel classes of (2)
- (4) solve the assignment problem
 - First general construction for non-extremal TA
 - \diamond In a constructed array every triple of two rows and a column have a common symbols

New triple array construction

- admissible $(r \times c, v)$, $a := \frac{e(e-1)}{r-1}$ and $k := \frac{c}{e}$ are integers
- (1) choose a symmetric 2-(r, e, a) design (row design = k copies of it)
- (2) choose a resolution of a resolvable 2- (c, e, λ_{cc}) design (column design)
- (3) choose a bijection between blocks of (1) and parallel classes of (2)
- (4) solve the assignment problem
 - First general construction for non-extremal TA
 - \diamond In a constructed array every triple of two rows and a column have a common symbols
 - Some extremal triple arrays can be constructed this way:

1	2	3	4	5	6	7	8	9
2	3	4	5	6	10	8	11	12
5	7	1	10	11	8	12	9	3
12	10	11	9	7	1	4	2	6

New non-extremal triple arrays

• Only one example of a non-extremal triple array was known before

New non-extremal triple arrays

• Only one example of a non-extremal triple array was known before

New $(7 \times 15, 35)$ -triple arrays

- ullet 7 non-isomorphic resolutions of a 2-(15, 3, 1) design (Kirkman parades)
- Exhaustive search on a computer
- \diamond There are 85 pairwise non-isotopic $(7 \times 15, 35)$ -TA with the described structure G.-Öhman, 2023+

# of parade	1	2	3	4	5	6	7
Auth	168	168	24	24	12	12	21
TA found	0	3	24	4	21	21	12

New non-extremal triple arrays

• Only one example of a non-extremal triple array was known before

New $(7 \times 15, 35)$ -triple arrays

- 7 non-isomorphic resolutions of a 2-(15,3,1) design (Kirkman parades)
- Exhaustive search on a computer
- \diamond There are 85 pairwise non-isotopic $(7 \times 15, 35)$ -TA with the described structure G.-Öhman, 2023+

# of parade	1	2	3	4	5	6	7
Auth	168	168	24	24	12	12	21
TA found	0	3	24	4	21	21	12

First $(21 \times 15, 63)$ -triple arrays

• 149+ resolutions of a 2-(15, 5, 6) design

Mathon-Rosa, 1989

- Exhaustive search is out of the question
- Randomization + greedy nonexhaustive techniques

An example of a $(21 \times 15, 63)$ -triple array

										_								_		
2	25	46	19	54	4	37	23	55	8	31	58	15	12	18	36	41	44	28	51	62
45	35	41	1	33	6	27	20	58	9	28	62	13	10	55	38	16	52	24	46	50
15	1	42	30	55	54	5	31	35	11	7	39	58	43	16	47	50	19	22	26	63
14	24	61	3	32	16	10	5	40	51	9	43	59	36	26	19	37	53	55	48	28
6	34	10	17	1	8	29	21	42	55	14	37	60	31	63	46	49	43	23	27	53
13	9	47	58	2	5	28	63	34	12	42	44	53	17	25	39	24	20	56	32	49
1	36	63	16	52	7	11	33	4	20	29	59	23	44	56	14	38	42	48	25	51
51	22	62	2	56	47	30	6	36	19	8	38	11	32	17	13	40	27	43	60	52
50	27	3	29	37	18	6	32	59	56	41	7	10	34	15	20	22	54	44	47	61
49	2	11	59	38	46	4	24	56	21	40	9	54	35	61	15	17	26	45	31	29
44	26	1	21	39	53	12	61	6	57	33	8	22	18	13	48	51	40	29	58	35
5	7	2	60	53	48	38	19	41	49	15	61	12	16	27	34	23	45	57	33	30
43	23	40	20	3	9	39	4	57	10	30	60	14	33	62	35	18	25	47	49	54
3	8	48	18	31	52	25	62	5	50	13	45	24	11	57	37	42	21	30	59	34
4	3	12	28	57	17	26	22	60	7	32	63	52	45	14	21	39	41	46	50	36

An example of a $(21 \times 15, 63)$ -triple array

_	\ \r	10	1.0	~ 1	_	0=	00			0.1	F 0	1	10	10	0.0	4.1		00		00
2	25	46	19	54	4	37	23	55	8	31	58	15	12	18	36	41	44	28	51	62
45	35	41	1	33	6	27	20	58	9	28	62	13	10	55	38	16	52	24	46	50
15	1	42	30	55	54	5	31	35	11	7	39	58	43	16	47	50	19	22	26	63
14	24	61	3	32	16	10	5	40	51	9	43	59	36	26	19	37	53	55	48	28
6	34	10	17	1	8	29	21	42	55	14	37	60	31	63	46	49	43	23	27	53
13	9	47	58	2	5	28	63	34	12	42	44	53	17	25	39	24	20	56	32	49
1	36	63	16	52	7	11	33	4	20	29	59	23	44	56	14	38	42	48	25	51
51	22	62	2	56	47	30	6	36	19	8	38	11	32	17	13	40	27	43	60	52
50	27	3	29	37	18	6	32	59	56	41	7	10	34	15	20	22	54	44	47	61
49	2	11	59	38	46	4	24	56	21	40	9	54	35	61	15	17	26	45	31	29
44	26	1	21	39	53	12	61	6	57	33	8	22	18	13	48	51	40	29	58	35
5	7	2	60	53	48	38	19	41	49	15	61	12	16	27	34	23	45	57	33	30
43	23	40	20	3	9	39	4	57	10	30	60	14	33	62	35	18	25	47	49	54
3	8	48	18	31	52	25	62	5	50	13	45	24	11	57	37	42	21	30	59	34
4	3	12	28	57	17	26	22	60	7	32	63	52	45	14	21	39	41	46	50	36

- Non-extremal triple arrays for other parameters
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - $\diamond\,$ couldn't find a solution for $(13\times 40,130)$ even with nonexhaustive search
 - use "nice" resolutions? use geometry?

- Non-extremal triple arrays for other parameters
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - \diamond couldn't find a solution for $(13 \times 40, 130)$ even with nonexhaustive search
 - use "nice" resolutions? use geometry?
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$. . . : no resolvable 2-designs are known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: our construction is not applicable

- Non-extremal triple arrays for other parameters
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - \diamond couldn't find a solution for $(13 \times 40, 130)$ even with nonexhaustive search
 - use "nice" resolutions? use geometry?
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$...: no resolvable 2-designs are known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: our construction is not applicable
- Construction of non-extremal TA without the assignment problem step
 - Find sufficient conditions for our construction to work

- Non-extremal triple arrays for other parameters
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - \diamond couldn't find a solution for $(13 \times 40, 130)$ even with nonexhaustive search \diamond use "nice" resolutions? use geometry?
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$...: no resolvable 2-designs are known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: our construction is not applicable
- Construction of non-extremal TA without the assignment problem step
 - Find sufficient conditions for our construction to work
- Agrawal's conjecture: the assignment problem in Agrawal's construction has a solution if $\lambda_{rc} > 2$ (where $\lambda_{rc} = |R_i \cap C_j|$)

- Non-extremal triple arrays for other parameters
 - PG(2,q) + resolution of PG(3,q): $(7 \times 15,35)$, $(13 \times 40,130)$, ...
 - \diamond couldn't find a solution for $(13 \times 40, 130)$ even with nonexhaustive search \diamond use "nice" resolutions? use geometry?
 - o use flice resolutions: use geometry:
 - $(11 \times 45, 99)$, $(15 \times 91, 195)$...: no resolvable 2-designs are known
 - $(16 \times 21, 56)$, $(16 \times 25, 100)$, ...: our construction is not applicable
- Construction of non-extremal TA without the assignment problem step
 - Find sufficient conditions for our construction to work
- Agrawal's conjecture: the assignment problem in Agrawal's construction has a solution if $\lambda_{rc} > 2$ (where $\lambda_{rc} = |R_i \cap C_j|$)
- $v \ge r+c-1$ in any $(r \times c,v)$ -TA Bagchi, 1998; MPWY, 2005 But are there even admissible $(r \times c,v)$ with v < r+c-1?
 - \diamond Are there $r, c, v \in \mathbb{N}$, $\max(r, c) < v < r + c 1$ such that

$$\frac{rc}{v} \in \mathbb{N}, \ \frac{c(e-1)}{r-1} \in \mathbb{N}, \ \frac{r(e-1)}{c-1} \in \mathbb{N}?$$